Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 13(1): 7426, 2023 05 08.
Article in English | MEDLINE | ID: covidwho-2312407

ABSTRACT

The key to limiting SARS-CoV-2 spread is to identify virus-infected individuals (both symptomatic and asymptomatic) and isolate them from the general population. Hence, routine weekly testing for SARS-CoV-2 in all asymptomatic (capturing both infected and non-infected) individuals is considered critical in situations where a large number of individuals co-congregate such as schools, prisons, aged care facilities and industrial workplaces. Such testing is hampered by operational issues such as cost, test availability, access to healthcare workers and throughput. We developed the SalivaDirect RT-qPCR assay to increase access to SARS-CoV-2 testing via a low-cost, streamlined protocol using self-collected saliva. To expand the single sample testing protocol, we explored multiple extraction-free pooled saliva testing workflows prior to testing with the SalivaDirect RT-qPCR assay. A pool size of five, with or without heat inactivation at 65 °C for 15 min prior to testing resulted in a positive agreement of 98% and 89%, respectively, and an increased Ct value shift of 1.37 and 1.99 as compared to individual testing of the positive clinical saliva specimens. Applying this shift in Ct value to 316 individual, sequentially collected, SARS-CoV-2 positive saliva specimen results reported from six clinical laboratories using the original SalivaDirect assay, 100% of the samples would have been detected (Ct value < 45) had they been tested in the 1:5 pool strategy. The availability of multiple pooled testing workflows for laboratories can increase test turnaround time, permitting results in a more actionable time frame while minimizing testing costs and changes to laboratory operational flow.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/diagnosis , COVID-19 Testing , SARS-CoV-2/genetics , Saliva , RNA , Specimen Handling , RNA, Viral/genetics
2.
Microbiol Spectr ; 11(3): e0487922, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2305877

ABSTRACT

Reported rates of invasive pneumococcal disease were markedly lower than normal during the 2020/2021 winter in the Northern Hemisphere, the first year after the start of the COVID-19 pandemic. However, little is known about rates of carriage of pneumococcus among adults during this period. Between October 2020-August 2021, couples in the Greater New Haven Area, USA, were enrolled if both individuals were aged 60 years and above and did not have any individuals under the age of 60 years living in the household. Saliva samples and questionnaires regarding social activities and contacts and medical history were obtained every 2 weeks for a period of 10 weeks. Following culture-enrichment, extracted DNA was tested using qPCR for pneumococcus-specific sequences piaB and lytA. Individuals were considered positive for pneumococcal carriage when Ct values for piaB were ≤40. Results. We collected 567 saliva samples from 95 individuals (47 household pairs and 1 singleton). Of those, 7.1% of samples tested positive for pneumococcus, representing 22/95 (23.2%) individuals and 16/48 (33.3%) households. Study participants attended few social events during this period. However, many participants continued to have regular contact with children. Individuals who had regular contact with preschool and school-aged children (i.e., 2 to 9 year olds) had a higher prevalence of carriage (15.9% versus 5.4%). Despite COVID-19-related disruptions, a large proportion of older adults continued to carry pneumococcus. Prevalence was particularly high among those who had contact with school-aged children, but carriage was not limited to this group. IMPORTANCE Carriage of Streptococcus pneumoniae (pneumococcus) in the upper respiratory tract is considered a prerequisite to invasive pneumococcal disease. During the first year of the COVID-19 pandemic, markedly lower rates of invasive pneumococcal disease were reported worldwide. Despite this, by testing saliva samples with PCR, we found that older adults continued to carry pneumococcus at pre-pandemic levels. Importantly, this study was conducted during a period when transmission mitigation measures related to the COVID-19 pandemic were in place. However, our observations are in line with reports from Israel and Belgium where carriage was also found to persist in children. In line with this, we observed that carriage prevalence was particularly high among the older adults in our study who maintained contact with school-aged children.


Subject(s)
COVID-19 , Pneumococcal Infections , Child , Humans , Child, Preschool , Infant , Aged , Streptococcus pneumoniae/genetics , Pandemics , Nasopharynx , Carrier State/epidemiology , COVID-19/epidemiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control
3.
mSphere ; : e0033122, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2193480

ABSTRACT

Nasopharyngeal swabs are considered the gold-standard sample type for the detection of Streptococcus pneumoniae carriage, but recent studies have demonstrated the utility of saliva in improving the detection of carriage in adults. Saliva is generally collected in its raw, unsupplemented state, unlike nasopharyngeal swabs, which are collected into stabilizing transport media. Few data exist regarding the stability of pneumococci in unsupplemented saliva during transport and laboratory storage. We therefore evaluated the effect of storage conditions on the detection of pneumococci in saliva samples using strains representing eight pneumococcal serotypes. The bacteria were spiked into raw saliva from asymptomatic individuals, and we assessed sample viability after storage at 4°C, room temperature, and 30°C for up to 72 h; at 40°C for 24 h; and following three freeze-thaw cycles. We observed little decrease in pneumococcal detection following culture enrichment and quantitative PCR (qPCR) detection of the piaB and lytA genes compared to testing fresh samples, indicating the prolonged viability of pneumococci in neat saliva samples. This sample stability makes saliva a viable sample type for pneumococcal carriage studies conducted in remote or low-resource settings and provides insight into the effect of the storage of saliva samples in the laboratory. IMPORTANCE For pneumococcal carriage studies, saliva is a sample type that can overcome some of the issues typically seen with nasopharyngeal and oropharyngeal swabs. Understanding the limitations of saliva as a sample type is important for maximizing its use. This study sought to better understand how different storage conditions and freeze-thaw cycles affect pneumococcal survival over time. These findings support the use of saliva as an alternative sample type for pneumococcal carriage studies, particularly in remote or low-resource settings with reduced access to health care facilities.

4.
Bull World Health Organ ; 100(12): 808-814, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2154563

ABSTRACT

As the coronavirus disease 2019 (COVID-19) continues to disproportionately affect low- and middle-income countries, the need for simple, accessible and frequent diagnostic testing grows. In lower-resource settings, case detection is often limited by a lack of available testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To address global inequities in testing, alternative sample types could be used to increase access to testing by reducing the associated costs. Saliva is a sensitive, minimally invasive and inexpensive diagnostic sample for SARS-CoV-2 detection that is appropriate for asymptomatic surveillance, symptomatic testing and at-home collection. Saliva testing can lessen two major challenges faced by lower- and middle-income countries: constrained resources and overburdened health workers. Saliva sampling enables convenient self-collection and requires fewer resources than swab-based methods. However, saliva testing for SARS-CoV-2 diagnostics has not been implemented on a large scale in low- and middle-income countries. While numerous studies based in these settings have demonstrated the usefulness of saliva sampling, there has been insufficient attention on optimizing its implementation in practice. We argue that implementation science research is needed to bridge this gap between evidence and practice. Low- and middle-income countries face many barriers as they continue their efforts to provide mass COVID-19 testing in the face of substantial inequities in global access to vaccines. Laboratories should look to replicate successful approaches for sensitive detection of SARS-CoV-2 in saliva, while governments should act to facilitate mass testing by lifting restrictions that limit implementation of saliva-based methods.


La maladie à coronavirus 2019 (COVID-19) continue à affecter les pays à revenu faible et intermédiaire de manière disproportionnée, accentuant le besoin en tests diagnostiques simples, accessibles et fréquents. Dans les endroits disposant de ressources limitées, la détection des cas se heurte souvent au manque de tests disponibles pour le syndrome respiratoire aigu sévère (SARS-CoV-2). Afin de lutter contre les inégalités mondiales en la matière, d'autres types d'échantillons pourraient être exploités, dans le but d'améliorer l'accès au dépistage tout en diminuant les frais qu'il engendre. Les échantillons de salive offrent une méthode de diagnostic fiable, peu invasive et peu coûteuse pour détecter le SARS-CoV-2. Cette méthode est compatible avec le suivi des personnes asymptomatiques, le dépistage des personnes symptomatiques et la collecte d'échantillons à domicile. Les tests salivaires permettent d'atténuer deux problèmes majeurs rencontrés par les pays à revenu faible et intermédiaire: une pénurie de ressources et des soignants surmenés. En outre, les patients peuvent effectuer le prélèvement eux-mêmes et cette méthode nécessite moins de moyens que celle reposant sur l'écouvillonnage. Pourtant, les tests salivaires de détection du SARS-CoV-2 n'ont pas été déployés à grande échelle dans les pays à revenu faible et intermédiaire. Malgré les nombreuses études démontrant l'utilité des tests salivaires dans ces régions, les perspectives d'optimisation de leur mise en œuvre n'ont suscité que peu d'attention. Dans le présent document, nous affirmons que des recherches scientifiques sur leur exécution sont requises pour combler ce fossé entre les faits et la pratique. Les pays à revenu faible et intermédiaire sont confrontés à une multitude d'obstacles dans leurs efforts de dépistage massif de la COVID-19. Et ce, en dépit des profondes inégalités qu'ils subissent dans le monde en matière d'accès aux vaccins. Les laboratoires devraient tenter de reproduire les approches les plus efficaces pour détecter le SARS-CoV-2 dans la salive, tandis que les gouvernements devraient prendre des mesures favorisant un dépistage de masse en levant les restrictions qui entravent le déploiement des tests salivaires.


A medida que la enfermedad por coronavirus de 2019 (COVID-19) sigue afectando de manera desproporcionada a los países de ingresos bajos y medios, crece la necesidad de realizar pruebas de diagnóstico sencillas, accesibles y frecuentes. En entornos de bajos recursos, la detección de casos suele estar limitada por la falta de pruebas disponibles para diagnosticar el coronavirus del síndrome respiratorio agudo grave de tipo 2 (SARS-CoV-2). Para abordar las desigualdades globales en las pruebas, se podrían utilizar tipos de muestra alternativos para aumentar el acceso a las pruebas reduciendo los costes asociados. La saliva es una muestra de diagnóstico sensible, poco invasiva y económica para la detección del SARS-CoV-2 que es apropiada para la vigilancia asintomática, las pruebas sintomáticas y la obtención en el hogar. Las pruebas de saliva pueden reducir dos de los principales problemas a los que se enfrentan los países de ingresos bajos y medios: la escasez de recursos y la sobrecarga de trabajo del personal sanitario. La toma de muestras de saliva permite realizar fácilmente la obtención por cuenta propia y requiere menos recursos que los métodos con hisopos. Sin embargo, las pruebas de saliva para el diagnóstico del SARS-CoV-2 no se han aplicado a gran escala en los países de ingresos bajos y medios. Aunque varios estudios realizados en estos entornos han demostrado la utilidad del muestreo de saliva, no se ha prestado suficiente atención a la optimización de su aplicación en la práctica. En este sentido, se considera que la investigación científica sobre la implementación es necesaria para subsanar esta deficiencia entre la evidencia y la práctica. Los países de ingresos bajos y medios se enfrentan a muchas dificultades en sus esfuerzos por realizar pruebas masivas en relación con la COVID-19, a pesar de las grandes desigualdades en el acceso global a las vacunas. Los laboratorios deberían intentar reproducir los enfoques que han tenido éxito para la detección sensible de la infección por el SARS-CoV-2 en la saliva, mientras que los gobiernos deberían actuar para facilitar las pruebas masivas eliminando las restricciones que limitan la aplicación de los métodos de diagnóstico salival.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Saliva , COVID-19 Testing , Developing Countries , COVID-19/diagnosis
5.
Bulletin of the World Health Organization ; 100(12):808-814, 2022.
Article in English | EuropePMC | ID: covidwho-2126083

ABSTRACT

As the coronavirus disease 2019 (COVID-19) continues to disproportionately affect low- and middle-income countries, the need for simple, accessible and frequent diagnostic testing grows. In lower-resource settings, case detection is often limited by a lack of available testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To address global inequities in testing, alternative sample types could be used to increase access to testing by reducing the associated costs. Saliva is a sensitive, minimally invasive and inexpensive diagnostic sample for SARS-CoV-2 detection that is appropriate for asymptomatic surveillance, symptomatic testing and at-home collection. Saliva testing can lessen two major challenges faced by lower- and middle-income countries: constrained resources and overburdened health workers. Saliva sampling enables convenient self-collection and requires fewer resources than swab-based methods. However, saliva testing for SARS-CoV-2 diagnostics has not been implemented on a large scale in low- and middle-income countries. While numerous studies based in these settings have demonstrated the usefulness of saliva sampling, there has been insufficient attention on optimizing its implementation in practice. We argue that implementation science research is needed to bridge this gap between evidence and practice. Low- and middle-income countries face many barriers as they continue their efforts to provide mass COVID-19 testing in the face of substantial inequities in global access to vaccines. Laboratories should look to replicate successful approaches for sensitive detection of SARS-CoV-2 in saliva, while governments should act to facilitate mass testing by lifting restrictions that limit implementation of saliva-based methods.

6.
Expert Rev Mol Diagn ; 22(5): 519-535, 2022 05.
Article in English | MEDLINE | ID: covidwho-1908595

ABSTRACT

INTRODUCTION: Symptomatic testing and asymptomatic screening for SARS-CoV-2 continue to be essential tools for mitigating virus transmission. Though COVID-19 diagnostics initially defaulted to oropharyngeal or nasopharyngeal sampling, the worldwide urgency to expand testing efforts spurred innovative approaches and increased diversity of detection methods. Strengthening innovation and facilitating widespread testing remains critical for global health, especially as additional variants emerge and other mitigation strategies are recalibrated. AREAS COVERED: A growing body of evidence reflects the need to expand testing efforts and further investigate the efficiency, sensitivity, and acceptability of saliva samples for SARS-CoV-2 detection. Countries have made pandemic response decisions based on resources, costs, procedures, and regional acceptability - the adoption and integration of saliva-based testing among them. Saliva has demonstrated high sensitivity and specificity while being less invasive relative to nasopharyngeal swabs, securing saliva's position as a more acceptable sample type. EXPERT OPINION: Despite the accessibility and utility of saliva sampling, global implementation remains low compared to swab-based approaches. In some cases, countries have validated saliva-based methods but face challenges with testing implementation or expansion. Here, we review the localities that have demonstrated success with saliva-based SARS-CoV-2 testing approaches and can serve as models for transforming concepts into globally-implemented best practices.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Nasopharynx , Pandemics , Saliva , Specimen Handling/methods
7.
BMC Infect Dis ; 22(1): 284, 2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1759709

ABSTRACT

BACKGROUND: There is an urgent need to expand testing for SARS-CoV-2 and other respiratory pathogens as the global community struggles to control the COVID-19 pandemic. Current diagnostic methods can be affected by supply chain bottlenecks and require the assistance of medical professionals, impeding the implementation of large-scale testing. Self-collection of saliva may solve these problems, as it can be completed without specialized training and uses generic materials. METHODS: We observed 30 individuals who self-collected saliva using four different collection devices and analyzed their feedback. Two of these devices, a funnel and bulb pipette, were used to evaluate at-home saliva collection by 60 individuals. SARS-CoV-2-spiked saliva samples were subjected to temperature cycles designed to simulate the conditions the samples might be exposed to during the summer and winter seasons and sensitivity of detection was evaluated. RESULTS: All devices enabled the safe, unsupervised self-collection of saliva. The quantity and quality of the samples received were acceptable for SARS-CoV-2 diagnostic testing, as determined by human RNase P detection. There was no significant difference in SARS-CoV-2 nucleocapsid gene (N1) detection between the freshly spiked samples and those incubated with the summer and winter profiles. CONCLUSION: We demonstrate inexpensive, generic, buffer free collection devices suitable for unsupervised and home saliva self-collection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Nucleocapsid Proteins , Pandemics , Saliva
SELECTION OF CITATIONS
SEARCH DETAIL